题意
一共 \(n\) 只球队,两两之间会进行一场比赛,赢得一分输不得分,给出每只球队最后的得分,问能否构造每场比赛的输赢情况使得得分成立。多组数据
\(T\le 10,n\le 5\times 10^4\)
分析
- 容易想到一个网络流的模型:把每场比赛看成点,连向对应的两只队伍。实际上可以把每只队伍的拆成 \(a_i\) 个点就是二分图的模型了。
- 考虑霍尔定理,队伍和队伍之间的区别只在于 \(a\) ,所以考虑枚举队伍数量 \(k\) ,判断最极端的 \(k\) 只队伍即可。\(a\) 最小的 \(k\) 只队伍应满足: \(\frac{k(k-1)}{2}\le \sum\limits_{i=1}^ka_i\),所以排个序判断一下就好了。
- 总时间复杂度 \(O(nlogn)\)
代码
#includeusing namespace std;typedef long long LL;#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)#define rep(i, a, b) for(int i = a; i <= b; ++i)#define pb push_back#define re(x) memset(x, 0, sizeof x)inline int gi() { int x = 0,f = 1; char ch = getchar(); while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();} while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();} return x * f;}template inline void Max(T &a, T b){if(a < b) a = b;}template inline void Min(T &a, T b){if(a > b) a = b;}const int N = 5e4 + 7;int n, T;int a[N];int main() { T = gi(); while(T--) { n = gi();bool fg = 1;LL tot = 0; rep(i, 1, n) a[i] = gi(), tot += a[i]; if(tot != 1ll * n * (n - 1) / 2) { puts("The data have been tampered with!"); continue; } sort(a + 1, a + 1 + n); LL sum = 0; rep(i, 1, n) { sum += a[i]; if(1ll * i * (i - 1) / 2 > sum) { fg = 0; break;} } if(!fg) puts("The data have been tampered with!"); else puts("It seems to have no problem."); } return 0;}